首页> 外文OA文献 >Experimental investigation and numerical description of the damage evolution in a duplex stainless steel subjected to VHCF-loading
【2h】

Experimental investigation and numerical description of the damage evolution in a duplex stainless steel subjected to VHCF-loading

机译:VHCF载荷下双相不锈钢损伤演变的实验研究和数值描述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The present study documents how the irreversible fraction of cyclic plastic strain, induced by loading amplitudes close to the durability limit, causes fatigue damage such as (i) slip band development, (ii) fatigue crack initiation and (iii) short fatigue crack propagation. The damage evolution of the austenitic-ferritic duplex stainless steel X2CrNiMoN22-5-3 (318 LN) was investigated up to one billion load cycles by means of high resolution electron microscopy (HR-SEM, TEM), focused ion beam (FIB) cutting, confocal laser scanning microscopy (CLSM), in-situ far field microscopy and high-energy (87.1 keV) X-ray diffraction (XRD) experiments. The experimentally identified damage mechanisms were implemented into three-dimensional finite element simulations, which consider crystal plasticity. These simulations enable fatigue life predictions of real microstructures obtained for instance by means of, e.g. automated electron back scatter diffraction (EBSD) analysis. The simulations allow for determining whether microcracks (i) initiate in a microstructure, (ii) arrest in the midst of the first grain, (iii) are permanently, (iv) temporary or (v) not at all blocked by grain or phase boundaries. Moreover, this concept is capable to contribute to the concept of tailored microstructures for improved cyclic-loading behaviour.
机译:本研究记录了由接近耐用极限的加载幅度引起的循环塑性应变的不可逆部分如何引起疲劳破坏,例如(i)滑移带发展,(ii)疲劳裂纹萌生和(iii)短疲劳裂纹扩展。通过高分辨率电子显微镜(HR-SEM,TEM),聚焦离子束(FIB)切割研究了高达十亿个负载循环的奥氏体-铁素体双相不锈钢X2CrNiMoN22-5-3(318 LN)的损伤演变,共聚焦激光扫描显微镜(CLSM),原位远场显微镜和高能(87.1 keV)X射线衍射(XRD)实验。实验确定的损伤机制被实现到考虑晶体可塑性的三维有限元模拟中。这些模拟使得能够预测例如通过例如热力学方法获得的真实微结构的疲劳寿命。自动电子背散射衍射(EBSD)分析。通过仿真可以确定微裂纹(i)是否在微观结构中引发,(ii)在第一晶粒中间的停滞,(iii)是永久性的,(iv)暂时的,或者(v)根本没有被晶界或相界所阻挡。而且,该概念能够有助于定制微结构的概念,以改善循环载荷性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号